Continental modeling at flash flood scale across the U.S.

Jonathan J. Gourley

NOAA/National Severe Storms Laboratory, Norman, OK, USA

Global Flood Partnership 2017 Conference

Tuscaloosa, Alabama

27-29 June 2017

NEXRAD-based Multi-Radar Multi-Sensor System

Adaptive Reflectivity-Rainfall (Z-R) Relationships

MRMS captures rainfall at flash flood scale

- NEXRAD Radar-only
- 2-min frequency
- 1-km² spatial resolution
- Covers continental US

Tuscaloosa, Alabama

Continental-scale Flash Flood Modeling

Global Flood Partnership 2017 Conference

Tuscaloosa, Alabama

27-29 June 2017

FLASH – Flooded Locations And Simulated Hydrographs

- First distributed hydrologic modeling framework to operate at flash flood scale in real-time across the continental United States (Gourley et al. 2017)
- Capability to provide forecasts at all grid points covered by radars without the requirement of model calibration
- Supported by Sandy Suppl. to improve the forecasters' toolbox in the NVVS (12 pubs, 7 PhDs, 1 MS, successful R2O)

Ellicott City, MD July 30, 2016

Global Flood Partnership 2017 Conference

Tuscaloosa, Alabama

8

Objective Streamflow Evaluation

- 1837 unregulated basins
- Drainage < 1000 km²
- Oct 2002 to Sep. 2011
- 5 min/1 km hindcast with MRMS radar-based forcing
- > 80% of basin area with 1 km radar coverage
- Snow contribution < 30% of annual precip
- 88,241 significant flow

events

Global Flood Partnership 2017 Conference

Tuscaloosa, Alabama

Comparison to Flash Flood Guidance

Flash Flood Guidance

CREST

Clark, R. A., J. J. Gourley, Z. L. Flamig, Y. Hong, and E. Clark, 2014: CONUS-wide evaluation of National Weather Service flash flood guidance products, *Wea. Forecasting*, **29**, 377-392. <u>doi:10.1175/WAF-D-12-00124.1</u>.

Global Flood Partnership 2017 Conference

Tuscaloosa, Alabama

- 11

Summary of FLASH Product Suite

- Rainfall Average Recurrence Intervals (ARI): Comparison of MRMS QPE to static thresholds
- QPE-to-Flash Flood Guidance Ratios: Comparison of MRMS QPE to dynamic thresholds
- Distributed hydrologic model forecasts: 0-12 hr forecasts of discharge, unit discharge, soil saturation

Tuscaloosa, Alabama

I km/2 min

I km/2 min

1 km/10 min

12

May 31, 2013 OKC Flash Flood: Rainfall

- Composite reflectivity animation
- Supercell storm with quasistationary core over Oklahoma City metro area

Reports from Twitter, Facebook, KFOR-TV, KOCO-TV, News9, and The Oklahoman; Photos from The Oklahoman

FLASH Rainfall Threshold Products

May 31, 2013 OKC Flash Flood: Forecast Streamflow

FLASH Distributed Hydrologic Model Products

Challenge of knowing flood stages in ungauged basins

Considerations for flash flood modeling at continental or global scale

- Quantitative precipitation forecasts offer lead time but rarely resolve storm-scale rainfall that drive flash floods
- Some countries (e.g., US, Canada, Europe, China, Japan, S. Korea) have invested in radar networks that can provide scale-relevant rainfall estimates
- Satellite-based rainfall show potential but have latency on the order of several hours and often do not perform well with extreme rainfall
- Hydrologic models don't necessarily need to be too terribly sophisticated; fluxes are generally 1-way
- Parsimonious hydrologic models can run efficiently and take advantage of high frequency inputs from radars or storm-scale NWP ensembles

Contact Information:

Jonathan J. Gourley

References:

jj.gourley@noaa.gov

- Clark, R.A., J. J. Gourley, Z. L. Flamig, Y. Hong, and E. Clark, 2014: CONUS-wide evaluation of National Weather Service flash flood guidance products. Wea. Forecasting, **29**, 377–392. doi: 10.1175/WAF-D-12-00124.1.
- Gourley, J. J., Z. Flamig, H. Vergara, P. Kirstetter, R. Clark III, E. Argyle, A. Arthur, S. Martinaitis, G. Terti, J. Erlingis, Y. Hong, and K. Howard, 2017: The Flooded Locations And Simulated Hydrographs (FLASH) project: improving the tools for flash flood monitoring and prediction across the United States, Bull. Amer. Meteor. Soc., 98, 361-372. http://dx.doi.org/10.1175/BAMS-D-15-00247.1.
- Martinaitis, S. M., J. J. Gourley, Z. L. Flamig, E. M. Argyle, R.A. Clark, A. Arthur, B. R. Smith, J. M. Erlingis, S. Perfater, B. Albright, 2017: The HMT Multi-Radar Multi-Sensor Hydro Experiment, Bull. Amer. Meteor. Soc., 98, 347–359. <u>http://dx.doi.org/10.1175/BAMS-D-15-00283.1</u>
- Wang, J., Y. Hong, L. Li, J. J. Gourley, S. I. Khan, K. K.Yilmaz, R. F. Adler, F. S. Policelli, S. Habib, D. Irwin, A. S. Limaye, T. Korme, and L. Okello, 2011: The coupled routing and excess storage (CREST) distributed hydrological model. *Hydrol. Sci. Journal*, **56**, 84–98. doi: 10.1080/02626667.2010.543087.

Thank You

