

Making flood maps better and making them matter!

Machine learning, SmallSats, and iterative stakeholder design at Cloud to Street Beth Tellman

support@cloudtostreet.info

www.cloudtostreet.info

Twitter: @cloud2Street

WHAT WE DO

We provide near real-time flood risk analytics in easy-to-use decision support tools to enable faster disaster response and long term risk reduction. Leveraging remote sensing, crowd intelligence, and machine learning, our mission is to ensure that all vulnerable communities have the information they need to prepare for and respond to disasters.

SELECT PARTNERS

IIIIIII Willis Towers Watson

CLOUD

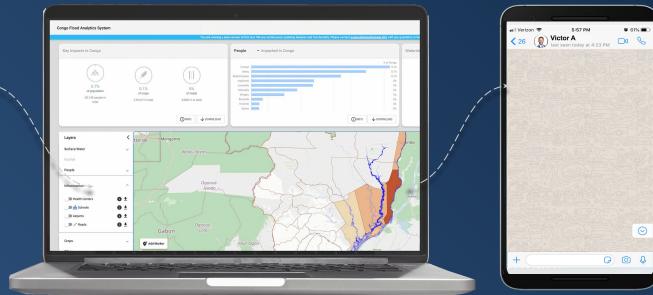
Analyze satellite data in the Google Earth Engine Cloud

TO

Estimate affected population, infrastructure, and croplands, and create SMS alerts that syncs with conditions on the ground

STREET

Users upload observations and reach out for support



WHERE WE WORK

RISK REDUCTION & PLANNING

Sudan South Sudan The Republic of Congo Uganda Kenya Rwanda Tanzania The Gambia Ivory Coast Democratic Republic of Congo

EMERGENCY RESPONSE

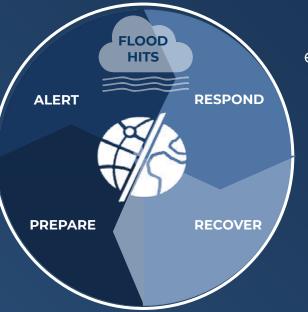
The Republic of Congo Niger Ghana Ethiopia Sri Lanka FINANCIAL SERVICES & INSURANCE

Ghana The Gambia United States Indonesia India

WE REDUCE RISK AND INCREASE CAPACITY THROUGHOUT THE DISASTER CYCLE

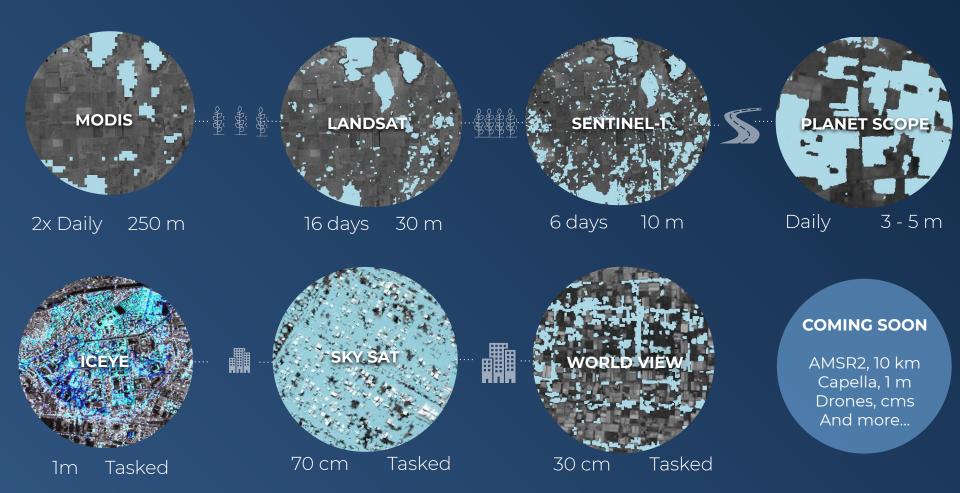
Enable governments and planners to map flood risk without ground gauges; support flood model calibration

Create a financial safety net for all communities by supplying insurers with data



Near real-time updates ensure timely evacuation

Increase efficiency of disaster relief, and trigger insurance payouts



OUR IMPACT with WFP Congo

2018 **PREPARE**

Historical Risk Maps

Supported the relocation of 7,000 refugees

2019 **RESPOND**

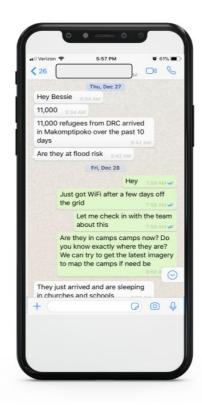
Emergency Activation

Presented to decision-makers to secure \$11.5M in assistance

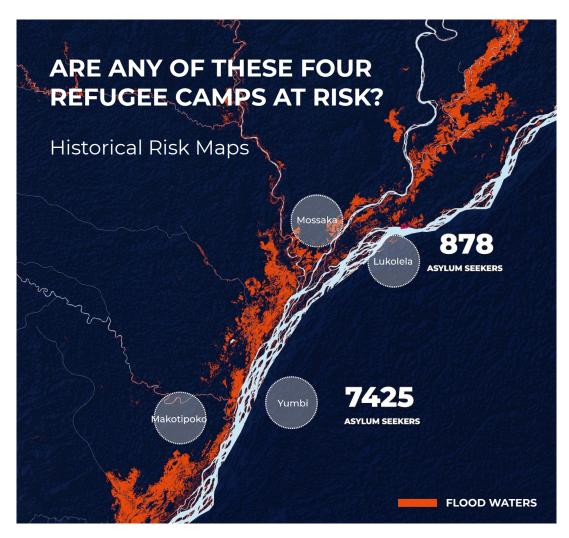
2020 **RECOVER**

Monthly Reports

Distributed cash transfers to 145,000 civilians



The WFP Country Director messaged us because they and the government needed to know if thousands of new refugees should be recoated



Historical flood mapping in 3 days indicate one of the camps (Makotipoko) was at high risk of flooding, supporting the Ministry of Social Affairs' recommendation to relocate 7,000 at risk refugees

RESPOND

Emergency Activation

In 2019, another catastrophic flood hits Congo, including Makotipoko. We used high resolution satellites, and provided emergency numbers in days that enabled WFP Congo to secure \$11.5 M in emergency funding.

HIGH-RESOLUTION IMAGERY OF MAKOTIPOKO, SKYSAT SATELLITE 2019, PLANET LABS

RECOVER

More Accurate Algorithms

Where will floods cause long term food insecurity? Global crop data was inaccurate (20% accuracy), so we used Google Earth Engine to make better crop maps (94% accuracy) in a week. These data identified **360,000 people with long term flood impacts, enabling WFP Congo to provide 145,000 cash-based transfers to affected households.**



Making flood maps better and more useful

Use Smallsats!

COVERAGE

Invest in deep learning

-IMPROVE IMPACT DATA

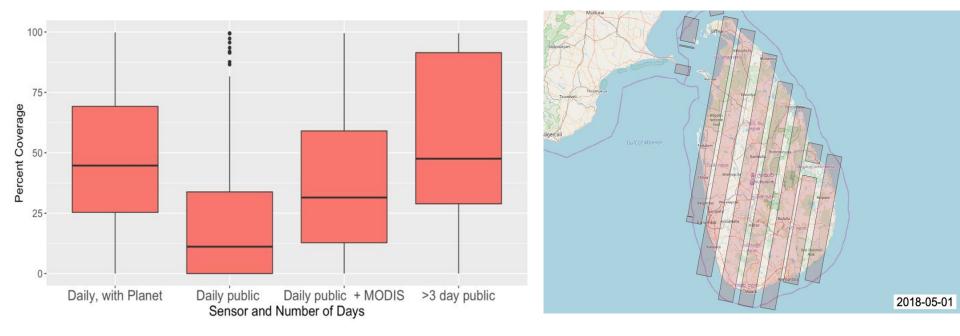
-SEE THROUGH CLOUDS

-CNNS + CROWDSOURCING IMPROVE FLOOD MAPS (SUNKARA ET AL 2021)

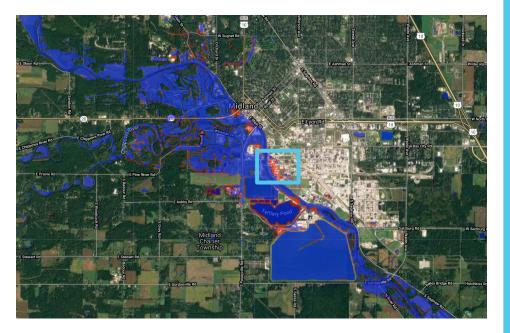
-USE GANS TO SIMULATE SWIR, IMPROVES ACCURACY 10%! (AKIVA ET AL 2021) Practice human-centered design

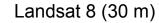
USERS ARE NOT A LAST MILE PROBLEM (THEY ARE THE FIRST 100 MILE SOLUTION!)

Gains in **consistency** and resolution with Smallsats-> Example: Planet



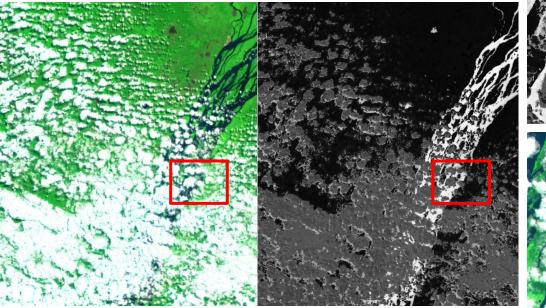
Dam Break, Michigan May 20th Imagery --Landsat vs PlanetScope

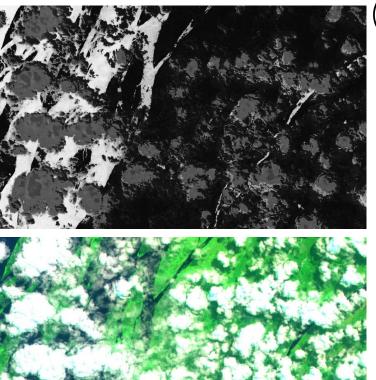




PlanetScope (3 m)

Random Forest maps floods through thin clouds

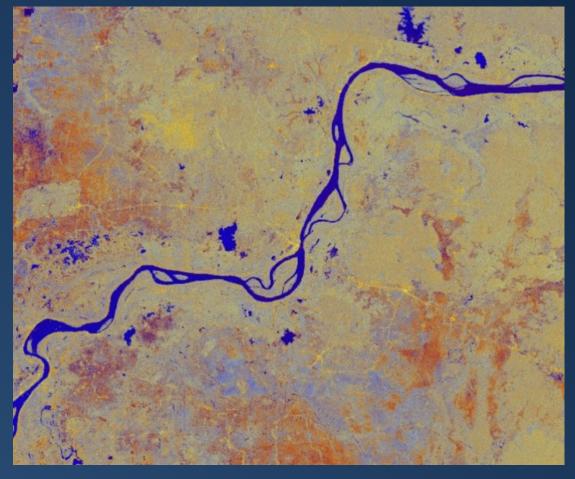




⁰ Water Probability

Use CNNs to get more spatial info into flood predictions (Peng et al 2019)

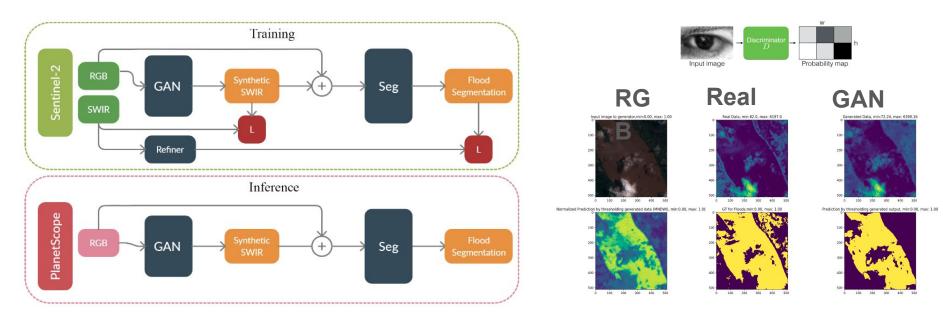
Can use labeled data -> Sen1floods11 (Bonafilia et al 2020), and SEN12FLOOD (Rambour et al 2020) for ML radar/optical model development



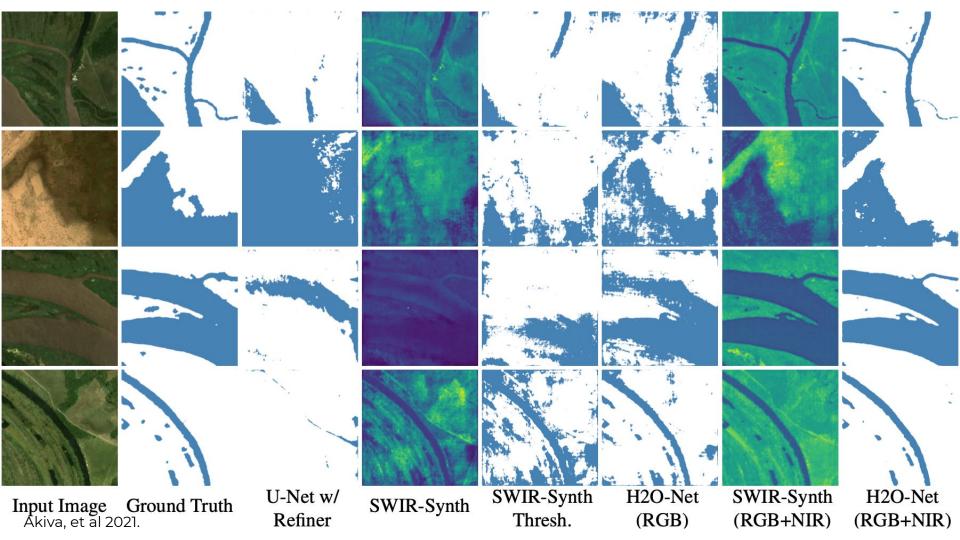
Bonafilia, D., Tellman, B., Anderson, T., Issenberg, E. 2020. Sen1Floods11: a georeferenced dataset to train and test deep learning flood algorithms for Sentinel-1. **The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshop**



Self-Supervised Flood Segmentation via Adversarial Domain Adaptation and Label Refinement



Akiva, Peri, Matt Purri, Beth Tellman, Tyler Anderson, and Kristin Dana. "H20-Net: Self Supervised Flood Segmentation via Adversarial Domain Adaptation and Label Refinement." In 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). <u>https://arxiv.org/abs/2010.05309</u>.



Results- TL;DR

-synthesized SWIR from RGB increases accuracy of flood mapping for BOTH drone and Planetscope by ~10-15%

-if you don't have enough labeling data for CNNs, refiners increase accuracy ~3-5%

PlanetScope [2]			
Bands Used	Pixel Accuracy (%)	mIoU (%)	FW-IoU (%)
RGB+NIR	72.35	63.26	61.53
RGB+NIR	85.47	71.93	74.49
RGB+NIR	87.23	74.52	76.88
RGB	57.03	31.46	29.61
RGB	59.22	33.74	39.89
RGB	64.01	42.63	49.49
RGB	66.81	48.18	50.98
RGB	69.23	53.31	53.97
RGB	76.19	60.92	62.42
	RGB+NIR RGB+NIR RGB+NIR RGB RGB RGB RGB RGB	Bands Used Pixel Accuracy (%) RGB+NIR 72.35 RGB+NIR 85.47 RGB+NIR 87.23 RGB 57.03 RGB 59.22 RGB 64.01 RGB 66.81 RGB 69.23	Bands Used Pixel Accuracy (%) mIoU (%) RGB+NIR 72.35 63.26 RGB+NIR 85.47 71.93 RGB+NIR 87.23 74.52 RGB 57.03 31.46 RGB 59.22 33.74 RGB 64.01 42.63 RGB 66.81 48.18 RGB 69.23 53.31

Akiva, et al 2021.

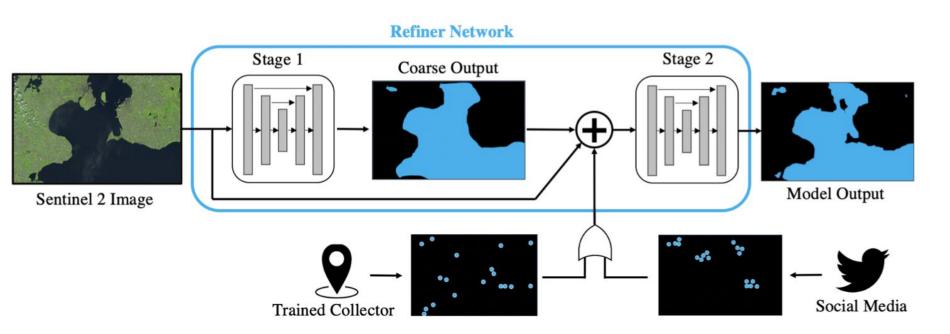
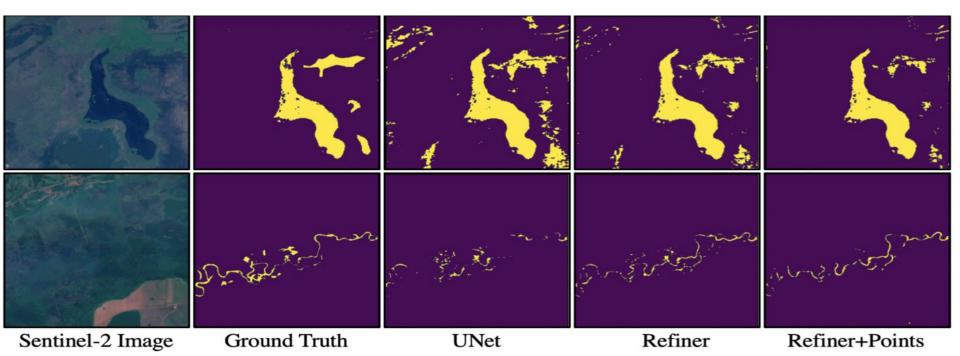


Figure 1: The inference pipeline of our model. The two-stage model first generates a segmentation mask from Sentinel-2 imagery in Stage 1, and then combines Sentinel-2 imagery, initial coarse output, and crowdsourced points in Stage 2 to generate the final segmentation mask. Points collected from either a Trained Collector or Social Media model can be used interchangeably in this model.

Sunkara, Veda, Matthew Purri, Bertrand Le Saux, and Jennifer Adams. "STREET TO CLOUD: IMPROVING FLOOD MAPS WITH CROWDSOURCING AND SEMANTIC SEGMENTATION." *NeurIPS Climate Change AI Workshop*, 2020, 5. A few ground points (20-50) aid CNN accuracy by 3-5%; trained data collectors increase accuracy adt'l 1%

Dispersion	Noise	Acc	mIoU
No Points	No Points	95.6	56.5
Low	Low	95.9	59.6
Low	High	96.9	61.0
High	Low	97.2	61.8
High	High	97.0	60.9

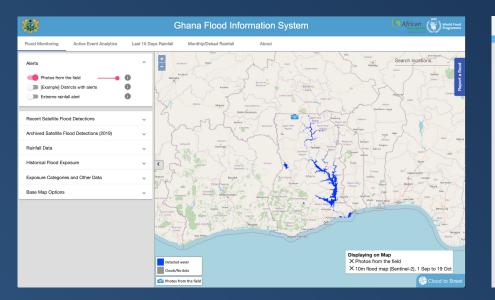


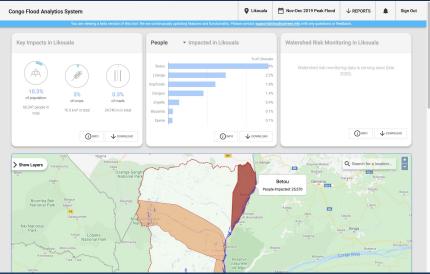
Sunkara, Veda, Matthew Purri, Bertrand Le Saux, and Jennifer Adams. "STREET TO CLOUD: IMPROVING FLOOD MAPS WITH CROWDSOURCING AND SEMANTIC SEGMENTATION." *NeurIPS Climate Change AI Workshop*, 2020, 5.

MAPS AREN'T ENOUGH

GET TO THE INSIGHT

Cloud to Street





"The information was not clear or broken down to local levels so we can't prioritize which to support"

—National Agency Disaster Management Organization, Ghana "The data was very much appreciated by my partners, they don't have this kind of data at the moment...

-World Food Programme, Republic of Congo

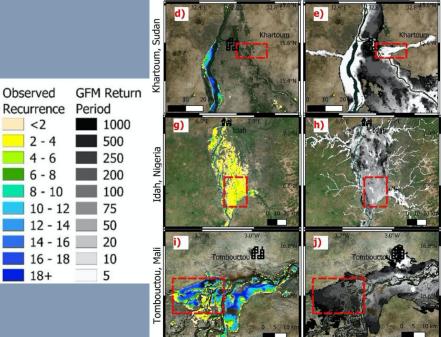
We have work to do together!

Together we can! GFP inspired collaboration comparing EO and Models HOT OF<u>F</u> THE PRESS!

-evaluate outcomes in user driven and defined contexts iteratively

-assess consistency and accuracy over time in publications

-understand how consistently deep learning can map floods operationally and extent of domain transfer possible



Hawker, Neal, Tellman, Liang, Schumann, Doyle, Sullivan, Savage, Tshimianga. 2020. Environmental Research letters. Comparing earth observation and inundation models to map flood hazards .https://iopscience.iop.org/article/10.1088/1748-9326/abc216/meta

BETH TELLMAN @pazjusticiavida

support@cloudtostreet.info

www.cloudtostreet.info

Twitter: @cloud2Street