

Leveraging Earth Observation and Data Assimilation for Improved Flood Inundation Forecasts

Antara Dasgupta

Australian research partnershi

What if most satellite-based flood observations could significantly improve flood forecasts?

False Alarms

This is the impact of integrating just one remotely sensed flood observation!!!

How will it work?

Make improvements at every step of the process

B) IIT BOMBAY

IMPROVING RADAR-BASED FLOOD MAPPING

Dasgupta, A., Grimaldi, S., Ramsankaran, R., Pauwels, V. R. N., & Walker, J. P. (2018). Towards operational SAR-based flood mapping using neuro-fuzzy texture-based approaches. *Remote Sensing of Environment*, 215(15 September 2018), 313–329. <u>http://doi.org/10.1016/j.rse.2018.06.019.</u>

T BOMBAY

Current Challenges

Histogram dependence and deterministic outcomes

Typical Flooded Image Histogram

Proposed solutions

Image texture optimization and neuro-fuzzy flood mapping

Texture optimization process

Robles/publication/326199223/figure/fig2/AS:644901943398403@1530768013996/Differences-between-Principal-Component-Analysis-PCA-and-Independent-Component-Analysis.png

IIT BOMBAY

Key Results

A New Method to Combine Satellitebased Flood Maps with Models

Dasgupta, A., Hostache, R., Ramsankaran, R., Pauwels, V.R.N., Schumann, G.J.P., Grimaldi, S., and Walker, J.P. (2020) A mutual information-based likelihood function for SAR-derived flood extent assimilation using particle filters. Water Resources Research (In Review).

BOMBAY

Current Challenges

Likelihood sensitivity towards slightly varying extents

Proposed Solution

Mutual Information (MI)

Prior pdf for

initial

sampling

Unknown non-

Gaussian "true"

state pdf to be

estimated

Posterior pdf

observations

based on

Finding the Best Flood Observations to Correct Flood Forecasts

Dasgupta, A., Hostache, R., Ramsankaran, R., Pauwels, V.R.N., Schumann, G.J.P., Grimaldi, S., and Walker, J.P. On the impacts of observation footprint, timing, and frequency on flood extent assimilation performance. Water Resources Research (Accept after minor revisions).

BOMBAY

Current Challenges

Only partial coverage for large catchments using high-res satellites

Potential Solution

Targeted observations based on river reach characteristics

IIT BOMBAY

Key Results

Brier Skill Scores showing the improvement in the forecast with the assimilation as compared to the forecast without the assimilation

BSS=1 means 100% improvement!!!

The Way Forward

Outlook

Develop observation localization strategy in space and time Scale for global implementation and integration with GloFAS

Test for different catchment characteristics and real cases

IIT BOMBAY

Feedback/Questions:

antara.dasgupta1@monash.edu

