Google Earth Engine Implementation of the Floodwater Depth Estimation Tool (FwDET-GEE) for Rapid and Large Scale Flood Analysis

Brad G. Peter¹, Sagy Cohen¹, Ronan Lucey², Dinuke Munasinghe¹, Austin Raney¹, and G. Robert Brakenridge³

¹Department of Geography, The University of Alabama, Tuscaloosa; ²Earth System Science Center, The University of Alabama in Huntsville; ³Dartmouth Flood Observatory, INSTAAR, University of Colorado Boulder

WaterServ

A Cyberinfrastructure for Analysis, Visualization, and Sharing of Hydrological Data https://waterserv.ua.edu/

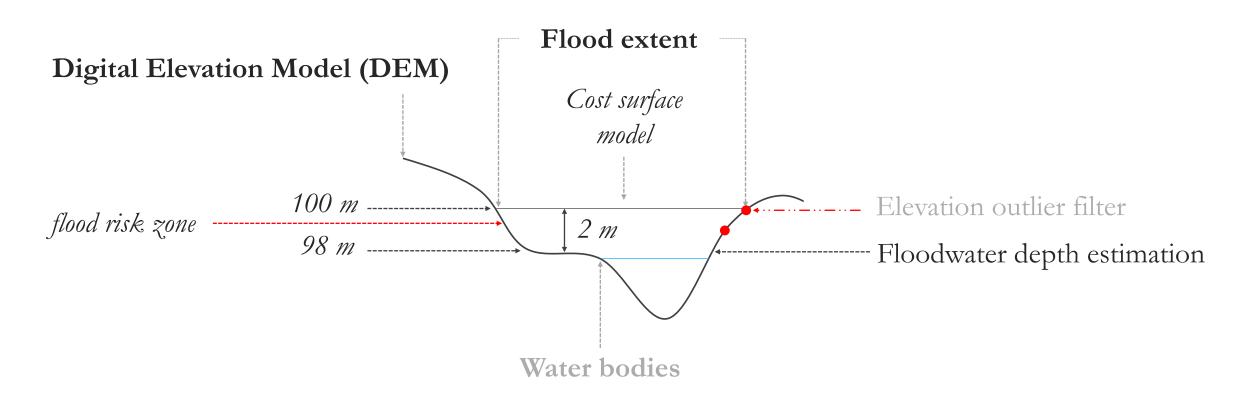
Surface Dynamics Modeling Lab

Funding & Acknowledgements

University of Alabama CyberSeed Program Alabama Water Institute http://ovpred.ua.edu/alabama-water-institute/

> Department of Geography, UA https://geography.ua.edu/

Surface Dynamics Modeling Lab (SDML) https://sdml.ua.edu/


> Dartmouth Flood Observatory https://www.dartmouth.edu/~floods/

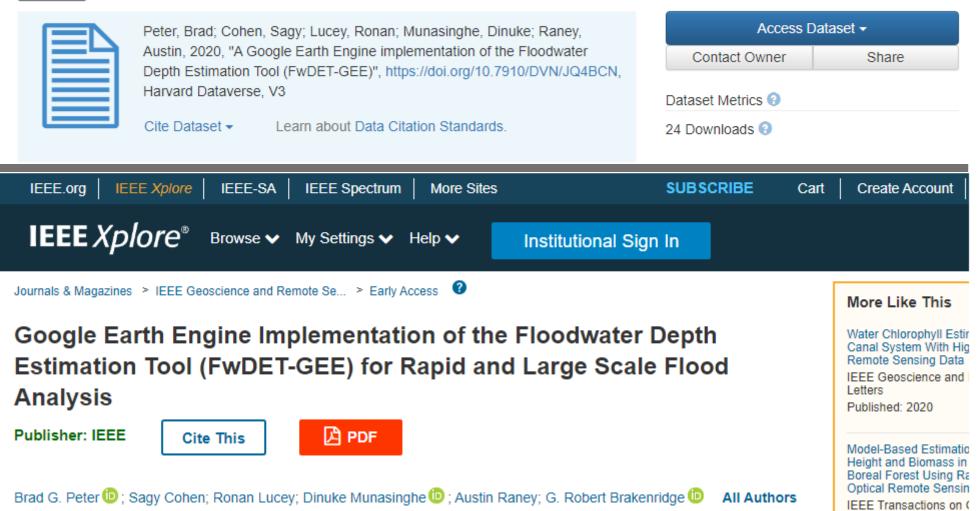
Earth System Science Center, UA Huntsville https://www.uah.edu/essc

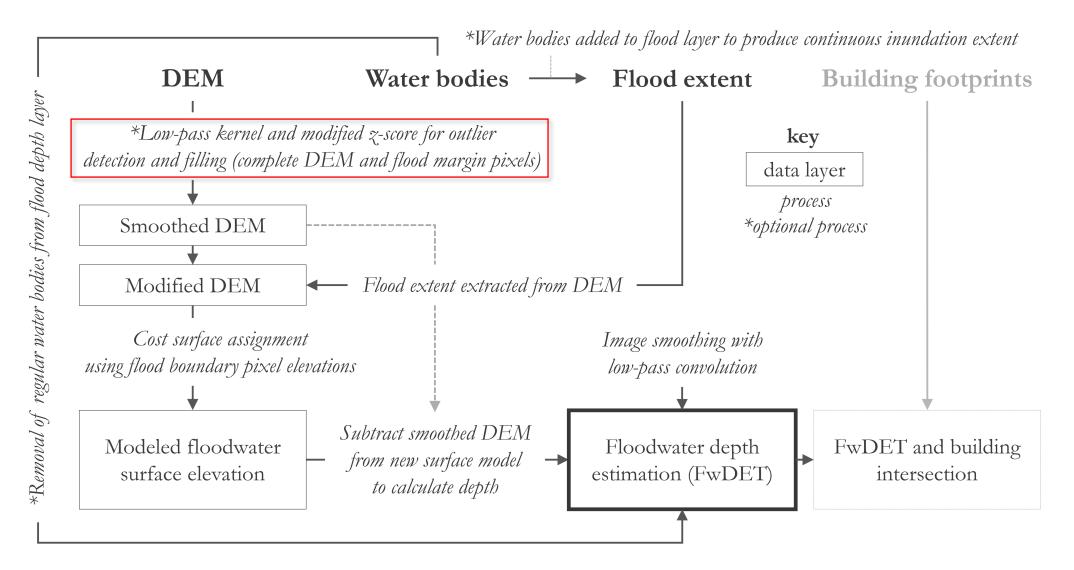
Background & Motivation

- Floods are **recurring natural disasters** that impact the socioeconomic wellbeing of humans across the globe
- According to the recent International Disaster Database report, approximately **85** million people globally were affected by floods each year between 2007 and 2016 [1],[2]
- Flood depth maps are critical tools for urban planning and emergency response and the floodwater depth estimation tool (FwDET) is a fast geographic solution that relies on minimal inputs [3]
- So, we can make flood depth maps relatively quickly, but how can we scale the process?

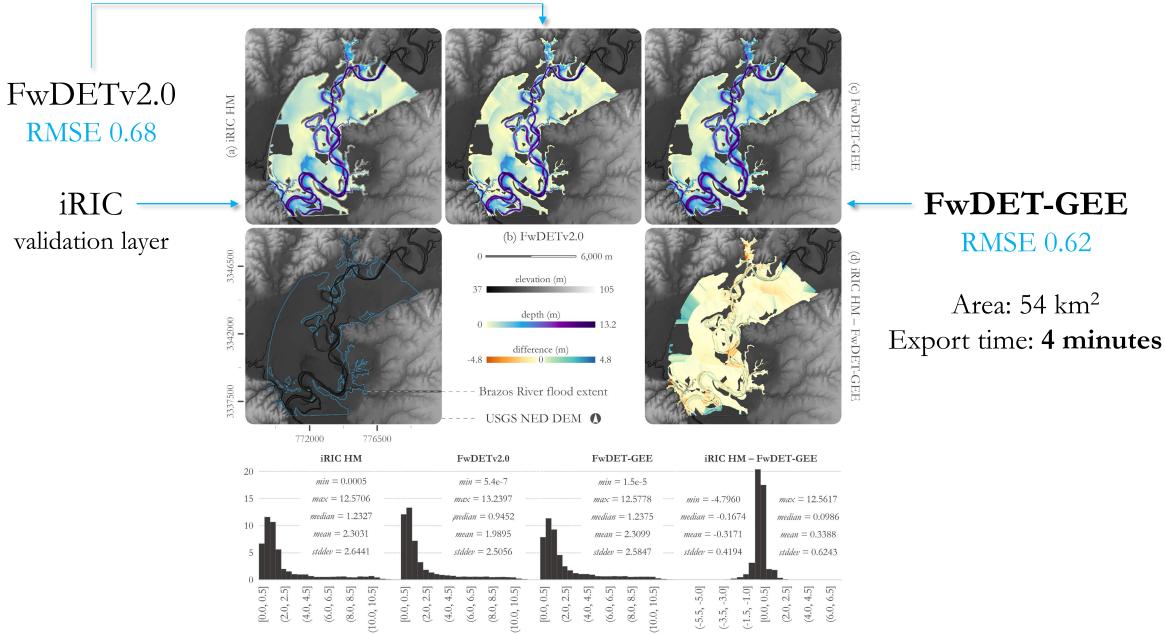
How FwDET Works

S. Cohen et al., "Estimating floodwater depths from flood inundation maps and topography," JAWRA J. Amer. Water Resour. Assoc., vol. 54, no. 4, pp. 847–858, Aug. 2018. [3]


Why FwDET-GEE?


- Streamlines FwDET by utilizing the **cloud-sourced** geospatial data and analysis functionalities of Google Earth Engine (GEE) [4]
- Open access and easy-to-use for rapid inundation mapping
- **Geographically scalable** solution for mapping flood depths across large areas
- Ability to access and use DEMs stored in the GEE repository greatly reduces FwDET's most time-consuming preprocessing step
- Shareable GEE application capabilities enhance and simplify the production and delivery of outputs

A Google Earth Engine implementation of the Floodwater Depth Estimation Tool (FwDET-GEE)



Peter, B. G., Cohen, S., Lucey, R., Munasinghe, D., Raney, A., and Brakenridge, G. R. 2020. Google Earth Engine Implementation of the Floodwater Depth Estimation Tool (FwDET-GEE) for Rapid and Large Scale Flood Analysis. *IEEE Geoscience and Remote Sensing Letters* 1–5. doi: 10.1109/LGRS.2020.3031190 [5]

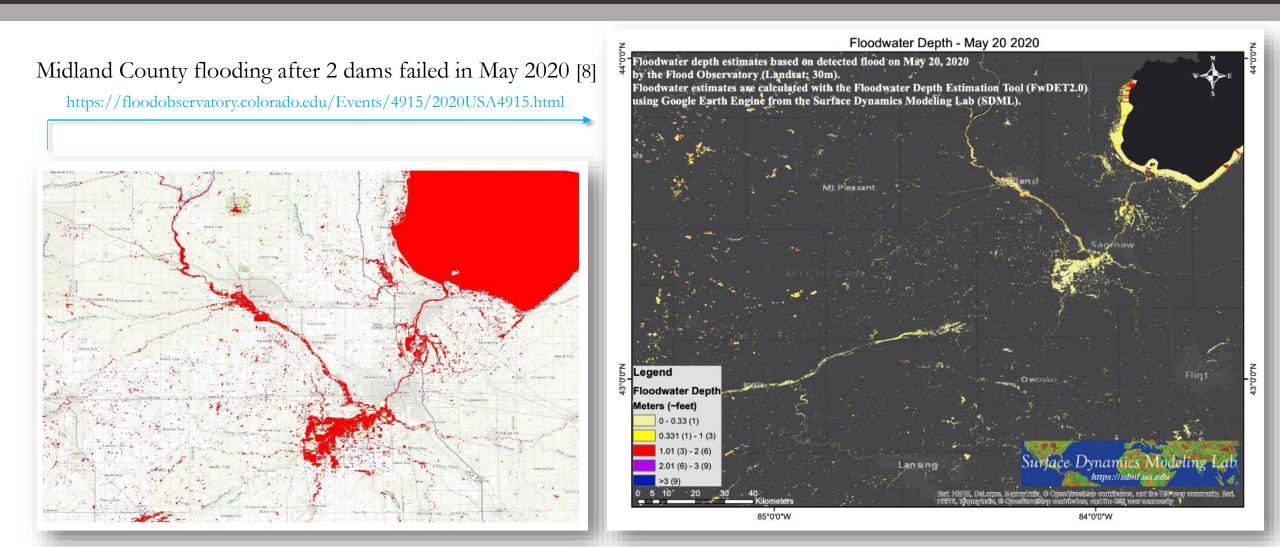
Step-by-Step Procedure

- Conceptual/technical replication of FwDETv2.0 [6]
- DEM acquisition
- Local outlier filtering of flood margin elevation pixels using the modified Z-score
- Extraction of the flood extent boundary pixel elevations from the DEM
- Construction of a new estimated water surface elevation using a cost accumulation algorithm
- Subtraction of the smoothed DEM from the modeled flood surface elevation to calculate depth
- A low-pass convolution to smooth the produced flood depth estimation layer

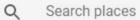
RMSE 0.62 Area: 54 km²

How to Use FwDET-GEE

- Sign up for Google Earth Engine at https://earthengine.google.com/
- Copy the script from the Harvard Dataverse repository (https://doi.org/10.7910/DVN/JQ4BCN) and paste it into your code editor in GEE at https://code.earthengine.google.com/ [7]
- Upload a flood extent Shapefile or GeoTIFF to GEE to use in the application

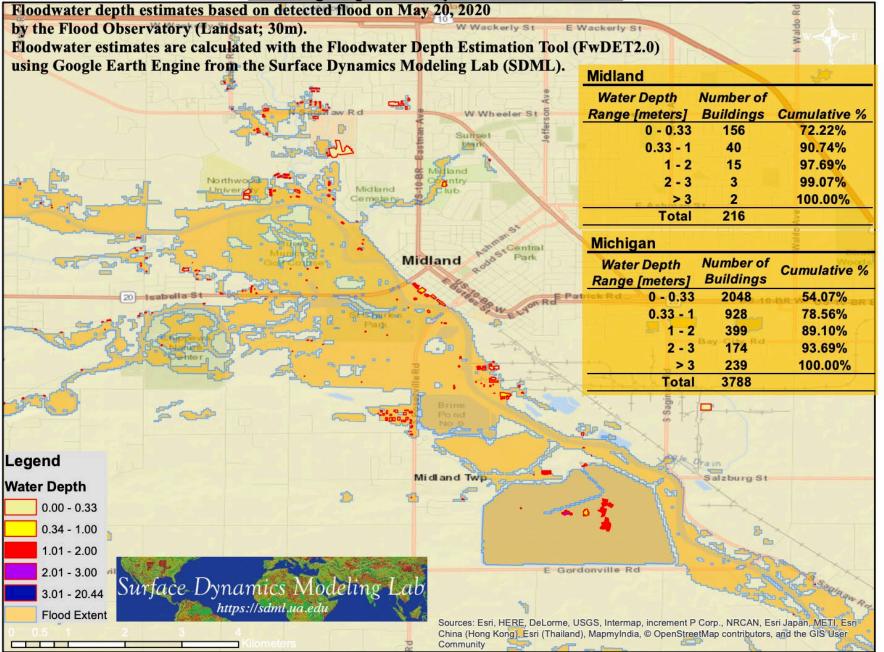


- Add the uploaded asset path name, follow parameterization directions, and click run
 - **var** flood = **ee.Image('**users/username/folder/flood_extent')


FwDET-GEE Parameterization

- Available **DEM options** (1) are USGS/NED (U.S.) and USGS/SRTMGL1_003 (global).
- Other options include: (2) running the elevation outlier filtering algorithm,
- (3) adding water body data to the inundation extent,
- (4) add a water body data layer uploaded by the user rather than using the JRC global surface water data,
- (5) masking out regular water body data,
- (6) masking out 0 m depths,
- (7) choosing whether or not to export,
- (8) exporting additional data layers, and
- (9) setting an export file name.
- The simpleVis option (10) bypasses the time-consuming processes and is meant for visualization only; set this option to false to complete the entire process and enable exporting.

GFP Activation—Michigan


Earth Engine Apps Experimental

https://waterserv.ua.edu/data-services/fwdet-gee/

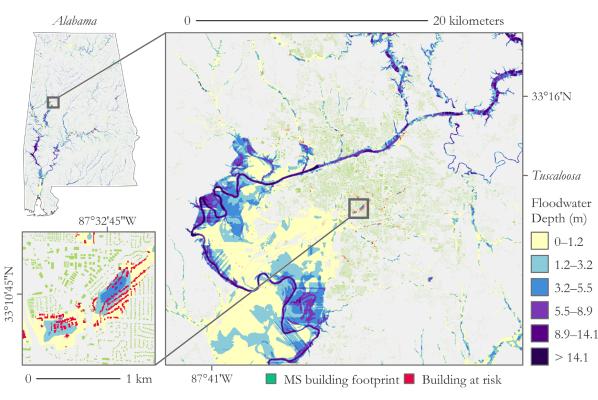
Building Impact - May 20 2020 - Midland

Area: 1,182 km² Export time: **41 minutes**

- Flood indunation maps uploaded to DFO website within 2 days of the flood event
 - With FwDET-GEE
 complete, such products
 can be produced and
 shared in a matter of
 hours, depending on
 availability of flood
 extent data

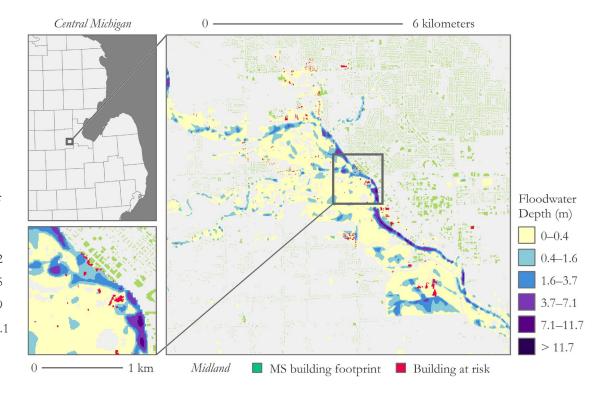
Next Steps & Future Research

Next steps


- Develop a standalone application in *WaterServ* (https://waterserv.ua.edu/) to eliminate the user's need to interact with the code
- Integrate FwDET-GEE with remote sensing-based observations of flood extent

Future Research

- Intersect floodwater depth estimations with urban infrastructure to characterize damage risk
- Evaluate FwDET-GEE with DEMs of multiple spatial resolutions (e.g., NED, SRTM, ALOS, MERIT, and LiDAR)
- Validate against field data on floodwater depth as availability arises
- Map more floods in partnership with GFP and the NASA Earth Science Disasters Program


Estimating Flood Damage Risk

Area: 20,271 km² Export time: **73 minutes**

Intersecting floodwater depth with urban infrastructure

Modeled using the Microsoft building footprint data and EnviroAtlas 100-year flood layer [9], [10]

References

- 1. D. Guha-Sapir, R. Below, and P. Hoyois, *EM-DAT: International Disaster Database*. Brussels, Belgium: Catholic Univ. Louvain, 2015. [Online]. Available: https://www.emdat.be/
- 2. Centre for Research on the Epidemiology of Disasters (CRED). (2017). *Natural Disasters 2017*. The International Disaster Database, Emergency Events Database (EM-DAT). [Online]. Available: https://www.emdat.be/
- 3. S. Cohen et al., "Estimating floodwater depths from flood inundation maps and topography," JAWRA J. Amer. Water Resour. Assoc., vol. 54, no. 4, pp. 847–858, Aug. 2018.
- 4. N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, "Google Earth engine: Planetary-scale geospatial analysis for everyone," *Remote Sens. Environ.*, vol. 202, pp. 18–27, Dec. 2017.
- 5. B. G. Peter, S. Cohen, R. Lucey, D. Munasinghe, and A. Raney, "Google earth engine implementation of the floodwater depth estimation tool (FwDET), version 3," Harvard Dataverse, 2020, doi: 10.7910/DVN/JQ4BCN.
- 6. S. Cohen et al., "The floodwater depth estimation tool (FwDET v2.0) for improved remote sensing analysis of coastal flooding," *Natural Hazards Earth Syst. Sci.*, vol. 19, no. 9, pp. 2053–2065, Sep. 2019.
- 7. B. G. Peter, S. Cohen, R. Lucey, D. Munasinghe, and A. Raney, "Google earth engine implementation of the floodwater depth estimation tool (FwDET), version 3," Harvard Dataverse, 2020, doi: 10.7910/DVN/JQ4BCN.
- 8. G. R. Brakenridge, "Flood risk mapping from orbital remote sensing," in Global Flood Hazard: Applications in Modeling, Mapping, and Forecasting, G. J.-P. Schumann, P. D. Bates, A. Heiko, and G. T. Aronica, Eds. Hoboken, NJ, USA: Wiley, 2018, pp. 43–54.
- 9. S. A. Woznicki, J. Baynes, S. Panlasigui, M. Mehaffey, and A. Neale, "Development of a spatially complete floodplain map of the conterminous united states using random forest," *Sci. Total Environ.*, vol. 647, pp. 942–953, Jan. 2019.
- 10. Microsoft. (2018). US Building Footprints. [Online]. Available: https://github.com/Microsoft/USBuildingFootprints

Thank you!

Contact and Collaboration

Thank you to the Global Flood Partnership (GFP) for organizing this event.

https://gfp.jrc.ec.europa.eu/

Questions?

Brad G. Peter, PhD Postdoctoral Researcher Department of Geography, University of Alabama https://cartoscience.com bpeter@ua.edu

Surface Dynamics Modeling Lab (SDML) Department of Geography, University of Alabama https://sdml.ua.edu/