

NZC.IAP.AC.CN

Evaluation of routed-runoff from land surface models and reanalyses using observed streamflow in China river basins

Aihui Wang and Yue Miao 2019.6

Background

- China, continental monsoon climate
- Offline, land surface models (LSMs), reproduce **streamflow** in large river basins
- Many runoff products exist, but quantitative evaluation and inter**comparisons** are very few for China

7.6-12, Gansu

Inner Mongolia

Flood events in China, 2018

7.18-22,

8.16-20, Anhui

8.27-9.1, Guangdong

NZC.IAP.AC.CN

Source: 2018 Major natural disasters report National disaster reduction office

Runoff products

No.	Name	LSMs	Forcing	Prec.	Resolution	Duration	Source	Offline,
1	VIC-CN05.1	VIC4.2.d	CN05.1		0.25°x0.25°	1961-2017	(Miao and Wang 2019)	 observational forcing data
2	CLM-CFSR	CLM4.5	CFSR	GPCP v2.2 CRU TS v3.1	0.5°x0.5°	1979-2009	(Wang, et al. 2016)	Torcing data
3	CLM-ERAI		ERAI					• Offline,
4	CLM-MERRA		MERRA					reanalysis
5	CLM-NCEP		NCEP-NCAR					Offline land-
6	ERAI/Land	HTESSEL	ERAI	GPCP v2.1	0.75°x0.75°	1979-2010	(Balsamo, et al. 2015)	only reanalysis product
7	JRA55	SiB	JRA55		T319(~55km)	1958-2012	(Ebita, et al	Offline, with
8	MERRA-2	Catchment	MERRA-2	CPCU, CMAP	0.5°x0.625°	1980-now	(Gelaro, et al. 2017)	weakly coupled LDASs

VIC-CN05.1 runoff, VIC4.2.d which has the **newest** parameterization schemes, driven by **station-based** atmospheric forcing data, and **soil parameters** from high resolution soil datasets based on field survey. More details about it seeing poster - *Estimates of the terrestrial hydrology for the conterminous China during 1961-2017*

NZC.IAP.AC.CN

Simulated runoff vs GRDC in JJA during 1980-2009

- GRDC composite runoff field (Fekete, et al. 2002)
- Spatial patterns, similar
 - **CLM-NCEP and MERRA-2**, much smaller, in **southeast** China

Hydrological stations in China during 1980-2008

Total drainage area (10⁴ km²) : Huai river basin: 27; Yangtze river basin: 180; Yellow river basin: 75. Which are prone to floods

Selected stations: 1-Huai_Wangjiaba 2-Huai_Bengbu 3-Yangtze_Zhimenda 4-Yangtze_Pingshan 5-Yangtze_Yichang 6-Yangtze_Datong2 7-Yellow_Tangnaihai 8-Yellow_Huayuankou

The CaMa-Flood routing model

- Driven by **daily runoff** (surface + subsurface)
- Horizontal water transport: **diffusive wave equation**
- Floodplain **inundation** dynamics
- Channel depth and width: **empirical equations** + **satellite**-based river width dataset (GWD-LR).

160

(b) Unit-Catchment Topography

(Yamazaki, et al. 2013)

Simulated streamflow vs Obs in JJA during 1980-2008

135°E

Only VIC-CN05.1 and CLM-**CFSR**, catch **magnitude** of observed streamflow, in the middle and lower reaches of the Yangtze, in purple

The CLM-MERRA, CLM-**NCEP, and MERRA-2 underestimate** the streamflow in the Yellow river

Seasonal cycles during 1980-2008

- Performances vary with
 source products, station
 locations (upper/lower),
 and river basins
- **Upper stream** stations, better, with clear seasonal cycles
- VIC-CN05.1, JRA55, and ERAI/land, better
- Huai and Yangtze river, better

Monthly streamflow in Yangtze river

- Most products **cannot catch the amplitude** of observations, except JRA55
- MERRA-2 and CLM-NECP, significantly smaller

Taylor diagram for monthly streamflow

- The **variabilities** of simulated streamflow are smaller than observations (std dev <1)
- Most **correlations** within 0.6-0.9
- Upper stream stations better than outlet stations (2,6,8)
- VIC-CN05.1, best, correlations in half stations over 0.9

NSE and RE The **best** two performances, **red**, while the **worst** two, **blue**;

Stations		VIC-	CLM-	CLM-	CLM-	CLM-	ERAI/	JRA55	MERRA-2
Stations		CN05.1	CFSR	ERAI	MERRA	NCEP	land		
1 Huai Wangijaha	NSE	0.73	0.38	0.35	0.11	-0.25	0.10	0.51	0.27
1-ffual_wangjiaba	RE	-0.30	-0.24	-0.27	-0.44	-0.76	-0.60	-0.20	-0.66
2 Hugi Ronghu	NSE	0.56	0.38	0.34	0.23	-0.10	0.16	0.38	0.22
2-IIuai_Deligbu	RE	0.01	0.03	-0.05	-0.04	-0.69	-0.48	0.42	-0.57
3 Vanatza 7himanda	NSE	0.58	-0.12	-0.05	-0.35	-0.56	0.48	0.28	0.01
5-1 angtze_Zminenua	RE	-0.33	-0.74	-0.69	-0.83	-0.91	-0.22	-0.43	-0.75
1-Vanatza Pinashan	NSE	0.80	0.60	0.55	-0.05	-0.30	0.88	0.88	-0.28
4-1 angtze_1 mgshan	RE	-0.20	0.09	0.00	-0.51	-0.64	-0.15	-0.18	-0.75
5 Vanatza Vichana	NSE	0.88	0.51	0.43	-0.29	-0.64	0.72	0.94	-0.56
5-1 angtze_1 tenang	RE	-0.11	-0.06	-0.08	-0.56	-0.69	-0.28	0.01	-0.75
6 Vangtza Datong?	NSE	0.53	0.33	0.27	-0.25	-0.82	0.22	0.40	-1.26
0-1 angize_Datong2	RE	-0.03	-0.01	-0.07	-0.41	-0.58	-0.32	-0.13	-0.69
7 Vollow Tangnaihai	NSE	0.69	-0.03	0.16	-0.63	-1.03	0.55	0.51	-0.51
/-1 enow_1 angnannai	RE	-0.24	-0.47	-0.32	-0.78	-0.91	-0.10	0.13	-0.80
8-Vallow Huavuarkou	NSE	-2.86	0.06	0.03	-0.30	-0.57	0.18	-3.18	-0.24
o-1 chow_11uayualikou	RE	1.23	-0.12	0.01	-0.50	-0.70	0.27	1.17	-0.52

Nash-Sutcliffe efficiency (NSE): \rightarrow 1, better; <0, unreliable; Relative error (RE): \rightarrow 0, better.

- The VIC-CN05.1, JRA55, ERAI/land, and CLM-CFSR products are relatively better
- While the CLM-NCEP and MERRA-2 products are relatively worse
 NZC.IAP.AC.CN

Annual floodplain inundation area fraction

JRA55 largest flooded extent, VIC-CN05.1 in the middle, MERRA-2 and CLM-NCEP smallest

Huai river basin, largest, 1%-18%

The **1998** flood event on the Yangtze river basin is clear

The 1998 Yangtze river flood in JJA

- represents hydrological stations:
 3-Yangtze_Zhimenda
 4-Yangtze_Pingshan
 5-Yangtze_Yichang
 6-Yangtze_Datong2
- Flood happened in the **middle and lower** reaches of the Yangtze, consistent with the reality;

Monthly streamflow and precipitation anomalies

• The **breakout** of streamflow anomalies in Yichang and Datong2 stations represents the 1998 flood event, which can be partly explained by the **increased** precipitation

NZC.IAP.AC.CN

Conclusions

 Compared to the gauged streamflow in China river basins, the simulations of VIC-CN05.1, JRA55, and ERAI/land are better, while MERRA-2 and CLM-NCEP are relatively worse;

STATISTICS AND A

- The simulated streamflow of eight products perform better in the upper stream stations and large river basins with abundant water resources;
- Although large uncertainties exist in the simulated inundation area of eight products, the timing and spatial pattern of the 1998 Yangtze river flood can be well simulated.

THANK YOU

Constant States

Nansen-Zhu International Research Centre

NZC.IAP.AC.CN