Integrating Global EO and Modeling Systems to support Disaster Relief Agencies

Albert Kettner¹

Robert Brakenridge¹ Guy Schumann ^{1,2}

Bob Adler³

Fritz Policelli⁴

Dan Slayback⁴

Patrick Matgen ⁵

Michael Souffront ⁶

DFO - Flood Observatory, CSDMS, INSTAAR, University of Colorado
 Remote Sensing Solutions (RSS)
 University of Maryland
 NASA Goddard Space Flight Center
 LIST, Luxembourg Institute of Science and Technology
 Aquaveo, Utah

Bob Brakenridge

Guy & Sasha (April 2019) Schumann

Paul Bates

Awarded the: Commander of the British Empire

Recognition for his major contributions towards a better understanding of flood risk management

Integrating Global EO and Modeling Systems to support Disaster Relief Agencies

Albert Kettner¹

Guy Schumann ^{1,2} Bob Adler ³ Fritz Policelli ⁴ Dan Slayback ⁴ Robert Brakenridge¹ Patrick Matgen ⁵ Michael Souffront ⁶

DFO - Flood Observatory, CSDMS, INSTAAR, University of Colorado
 Remote Sensing Solutions (RSS)
 University of Maryland
 NASA Goddard Space Flight Center
 LIST, Luxembourg Institute of Science and Technology
 Aquaveo, Utah

Natural disasters

- Flooding is *the* most common natural hazard worldwide & often devastating
- Impacts 21 million people every year
- Affects global GDP by ~\$100 billion every year

- 54 million people impacted per year
- > \$400 billion

World Resources Institute

By 2050 for Europe

5 fold increase in economic loss: *a) climate change, b) increasing value of land, c) urban development.*

European Environment Agency

Kerala, India

- August 2018 flooding
- Heavy monsoon (75% more rainfall)
- 65% of dams opened to prevent overflowing
- 501,19 km² was flooded by 17 August
- 483 fatalities & ~1million affected

DFO - Flood Observatory: Archive

	Register #	Annual DFO # (discontinu	Glide # ed)	Country	Other	Nations	Affected	Detailed Locations (click on active links to access inundation extents)	Validation (post event #3503)	Began	Ended	Duration in Days	Dead	Displaced	Damage (U
	4410		0	Vietnam	0	#N/A	#N/A	Four central provinces	News	9-Oct-16	16-Oct-16	8	21	100000	
4	4409		0	Australia	0	#N/A	#N/A	South Australia, north of Adelaide	News	1-Oct-16	16-Oct-16	16	1	0	
			0	Romania	Albania	#N/A	#N/A	Eastern Romania, Albania	News	9-Oct-16	16-Oct-16	8	1	300	

Flood products available in general - Observations Global initiatives

Flood extent: NRT + historical

Flood products available in general - Observations

By country

Flood products available in general - Simulations Global initiatives

Global Flood Monitoring system (GFMS – UMD; NRT + Forecast)

GLOFAS – Global Flood Awareness System NRT + Long term flood forecast JRC & ECMWF Operational since April 2018 at Copernicus Emergency Management Service

Flood products available in general - Simulations

Per country

USA - FEMA: 100 – 500yr return periods

Flood products available in general – New Tech

Social Media

Commercial satellites

- DigitalGlobe
- SpaceX

• • • • • • •

FloodTags

Disaster relief agencies When to respond?

In the immediate moments following a disaster event, humanitarian actors need to make rapid decisions on how to prioritize affected areas impacted by the event.

What is missing?

"One Stop Shop" for all flood products

One portal to get to all water related data

- Global coverage
- That includes:
 - Simulations (Forecasts + e.g. per return interval)
 - Observations (Extent as well as water discharge ground and satellite)
 - Near Real Time + Historical data (max flood extent, flood frequency)
- Keep data at source but connect through API / OGC standards

Ground based observations Water discharge

 Countries have only sparse amount of gauging stations and discharge data gets hardly shared although rivers cross boundaries.

Availability of historical discharge data in the GRDC database

Ground based observations Water discharge

• Countries have only sparse amount of gauging stations and discharge data gets hardly shared although rivers cross boundaries.

 Worldwide, water observation networks are incomplete to determine water quantity & networks are in jeopardy of further decline.

2010

Ground based observations Water discharge

- Countries have only sparse amount of gauging stations and discharge data gets hardly shared although rivers cross boundaries.
- Worldwide, water observation networks are incomplete to determine water quantity & networks are in jeopardy of further decline.

Hannah et al., 2010 Global Rundf Data Center (RRDC2010)

Availability of historical discharge data in the GRDC database

So:

Societies recognize that measuring river discharge is important from socio-economic or practical view but if already taken, discharge measurements are hardly shared and countries are not enough investing to extend or maintain gauging station networks

Water discharge from Space

Advantages utilizing satellites

- Continuous record also in the event of a flood; unlikely gauging station which could get destroyed during a large event
- Low maintenance costs
- Back processing of data once preferable gauging location is set
- Crossing borders, is applied globally

Disadvantages utilizing satellites

- Lower temporal resolution (daily not every 5 10 minutes)
- Preferable gauging location is not always an option (steep canyons, vegetation cover)

Elizabeth Morales

AMSR-E/AMSR-2 River discharge Measurement Method

Measuring temperature change by passive microwave signal

Q = Width x Depth x Velocity

When rivers rise (discharge, Q, m³/sec, increases), flow width and water surface area also increase.

River Watch sites use satellite passive microwave radiometry to sensitively monitor this in-pixel surface temperature change.

Translate Temperature to Discharge

If possible use Ground gauge data otherwise model

Model-based rating is comparison of *WBM* modeled monthly mean, maximum, and minimum discharges, 2003-2007, to the satellite-observed, time-equivalent signal

7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

40000 **Model-based Rating Curve** 35000 30000 Discharge (m3/sec) 25000 20000 087,322.07x²-2,206,288.97x+1,116,275.89 15000 $R^2 = 0.54$ 10000 5000 0 1.000 0.850 0.800 0.750 0.950 0.900 Microwave Signal, 2003-2007

Cooperative work including EU's Joint Research Centre (GDACS, Dr. Tom De Groeve) and DFO has resulted in a *global* network of satellite river gauging sites, with records extending on daily basis from 1998 up to today. Online display (click on dots).

Low flow

- Normal Flow
- Moderate Flooding, r > 1.33 years
- Major Flooding, r > 5 years

Brahmaputra, India

Flooded area for Normal Flow, Winter (~ 6100 m³/sec, observed February 11-22, 2000)

Brahmaputra, India

Flooded area for Moderate Flooding, r = 1.8 yr (37,000 m³/s, observed summer, 2013)

Brahmaputra, India

Flooded area for Moderate Flooding, $\mathbf{r} = 3 \text{ yr} (44,000 \text{ m}^3/\text{s}, \text{ observed summer, } 2007 \text{ m}^3/\text{s})$

So combining 2 remote sensing techniques, we can overcome Knowledge gap

We **start to have** adequate geospatial information on a *global basis* defining floodplains within the *mean annual* flood limit, or 25 - 50 -100 year floodplains.

Floodplain within the alluvial plain of the Waimakariri River, New Zealand.

What is missing?

Vision: One portal, all flood data

- Recurrence interval layers (1 in 100 500yr)
- High + low resolution
- Time machine mode
- Integrate DFO products with *flood forecasts,* e.g. GFMS (UMD), and GLOFAS (JRC)

Analog to e.g. DarkSky

http://floodobservatory.colorado.edu

Flood layers

Add layers

"Time machine mode" 2019 flooding part of USA

Observing flooding using AQUA/Terra Satellites – MODIS optical data

Mean annual water layer

Maximum observed flooding (1993 – now)

Flooding in excess of mean annual water layer

Dots = Satellite based discharge station

- low flow
- Normal flow
- flooding
- major flooding

Challenges to overcome

Global coverage

Integrate various temporal + spatial scales

 Amount of different data sources & formats: observations, simulations, historical data, discharge data,

Uncertainties in datasets

Flooding due to Cyclone Idai – Mozambique, Zimbabwe & Malawi

- SBIR
- Applied sciences

Thank you!

Albert Kettner <u>kettner@colorado.edu</u>

http://floodobservatory.Colorado.edu

Similar initiatives

NASA disaster portal

 Multiple disasters
 Monitoring on event base

- o Multi hazards
- NRT + forecast, less so historical events

Flood severity index

Hurricane intensity:

The Saffir-Simpson Scale (1971 Herbert Saffir & Robert Simpson)

Earthquake intensity:

- The Moment Magnitude Scale succeeded in the 70's Richter scale
- The Modified Mercalli (MM) Intensity Scale (1931 Harry Wood and Frank Neumann) Used in the United States.

INTENSITY	I	11-111	IV	V	VI	VII	VIII	IX	X+
Shaking	Not felt	Weak	Light	Moderate	Strong	Very Strong	Severe	Violent	Extreme
Damage	None	None	None	Very slight	Light	Moderate	Moderate/ heavy	Heavy	Very heavy
Peak Acc	<0.17	0.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
Peak Vel	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16 - 31	31-60	60-116	>116

Peak Acc = Peak ground acceleration (g), Peak Vel = Peak ground velocity (cm/s)

Saffir–Simpson hurricane wind scale								
Category	Wind speeds							
Five	≥70 m/s, ≥137 knots ≥157 mph, ≥252 km/h							
Four	58–70 m/s, 113–136 knots 130–156 mph, 209–251 km/h							
Three	50–58 m/s, 96–112 knots 111–129 mph, 178–208 km/h							
Two	43–49 m/s, 83–95 knots 96–110 mph, 154–177 km/h							
One	33–42 m/s, 64–82 knots 74–95 mph, 119–153 km/h							
Additional classifications								
Tropical	18–32 m/s, 35–63 knots							
storm	39–73 mph, 63–118 km/h							
Tropical depression	<17 m/s, <34 knots <38 mph, <62 km/h							