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Hurricane Harvey made landfall as a Category 4 storm at the Texas Gulf Coast (near Rockport) on August 25, 2017, causing wind damage and storm surge-induced coastal flooding. The storm slowly moved east along the coast (meandering in
and out of Gulf waters), in effect, stalling over southeast Texas and southwest Louisiana until September 1st. The slow-moving storm produced historically high amounts of rain over the region, with maximum accumulated rainfall of over 1,500
mm in southeast Texas. This led to catastrophic riverine and flash flooding in the region. Houston Metropolitan area (Texas) received over 750 mm of rainfall between August 24 and September 1, leading to widespread urban flooding,

displacing scores of people and damaging properties and infrastructure. It was estimated that the Hurricane Harvey was the costliest natural disasters in US history, with a total estimated damage of over $180 billion.

GFP is not regularly activated for flooding events in first-world countries, as these typically have established flood prediction and observation capabilities. GFP activation for this event evolved as its magnitude became apparent.
Below we provide a chronology of GFP activities during Hurricane Harvey:

Aug 25 Aug 27 Aug 28 Aug 29 Aug 30 Aug 31 Sep 1 Sep 2 onward
| | Flooding in Houston | | | | |
Landfall Initial Remote Sensing Mapping: SAR-based Mapping: Additional Sentinel-1 imagery was shared by AER shared updates from AMSR2 passes AER shared final maximum flood extent

Best
Track Archive for Cimata Stewardzhip (via nytimez.com)
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DFO Event webpage

GFP Partial Activation:
Dartmouth Flood Observatory (DFO) sent a
limited-distribution email (not via GFP
mailing list) informing about the activation of
the ‘International Charter’, setting up of a
DFO event webpage, and outlining available
satellite imagery resources from before the
flooding. The email led to inclusion of the
recipients in the FEMA daily Remote Sensing
Ce and

GFP Full Activation:
The first email was sent to the GFP mailing
list, proposing using this event as a case
study to study GFP-members flood
prediction systems. The seme email also
included streamflow predictions from the
Flooded Locations And Simulated
Hydrographs Project (FLASH). These
predictions were re-distributed to a range of
(e-g. FEMA, NASA), an action

calls which was later proved mstmmemnl in
connecting GFP products to the hurricane
response community (including for the
following flood events in Florida and Puerto
Rico). The email was shared with NOAA
National Water Center. A few hours following
the initial email, precipitation and inundation
predictions from GFMS were shered.

GFP @&

DFO Flood Event 4510
Hurricane Harvey, Texas and Lousiana
http://floodobservatory.colorado.e
du/Events/2017USA4510/2017USA
4510.html
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which thereafter became standard operating
procedure, with growing list of recipients.

DFO shared (via FEMA Geospatial
Coordination email distribution) an update
on flood mapping and modeling efforts,
including using Radersat images (from Aug
28) to map flooding, and sharing JPL-
produced flood maps from the ALOS-2
satellite. The confidence in these products
were relatively low. Atmospheric and
Environmental Research (AER) shared (via
GFP mailing list) a large-scale 90-m resolution
flood map of the impacted area, analyzed
from the AMSR2 (passive microwave) sensor
using an of the

Following a pass by Sentinel-1 satellite, SAR-
based flood maps were shared by
Luxembourg Institute of Science and
Technology (LIST), JPL and DFO. DFO ftp
server was used to store and distribute the
GIS files of these, and future, products
relating to this event. AER produced an
updsted maximum flood map for the region

LIST via the GFP mailing list. DFO provided
an updated inventory of GFP-produced flood
maps and links to its event-dedicated web-
portal and ftp server. The Surface Dynamics
Modeling Lab (SDML) shared a floodwater
depth map based on the AER maximum
flood extent map and & DEM. AER shared
updated large-scale maximum flood extent

using new AMSR2 imagery, which was shared maps incorporating AMSR2 data from August

via the GFP mailing list. It was then

30 and set up a FloodScan web interface with

FLASH Products
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§ FloodScan system Link between DFO/GFP

to the State Operations Center of the Texas
Division of Emergency Management (TDEM)
was established which initiated data sharing
via the TDEM data server (restricted access).

GFMS Predictions

T
AER FloodScan

T
DFO Flood map

to the FEMA Geosp daily
Coordination mailing list (now over 300

ipients) and wes up to the TDEM
data server.
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Harvey meps. LIST shared
SAR-based flood map covering the Houston
area from a 30 August Sentinel-1 pass. Aerial
photography was becoming available via
NOAA but with limited coverage outside the
coast.

on 31 August, revealing the extent of
flooding in east Texas (Beaumont area).
SDML shared a building impact map based
on AER maximum flood extent mep and
address points layer from the TDEM server
(uploaded by University of Texas, Austin).

T
AER FloodScan
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estimates incorporating all AMSR2 data
26 August - 2 September with expanded
coverage into Louisiana. LIST shared flood
maps from two Sentinel-1 passes on 4
September. DFO shared a maximum
extent map based on Sentinel-1 imagery.
DFO website was updated to include
these and other final products:
hitp://floodobservatory.colorade,edu/Events/2017
USA4510/2017USA4510.hem!

SDML Floodwater Depth and
building impact
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Comparison with 1,121 GRDC Streamflow Gauges
Nash- Sutcllffe (NSC)
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Evaluation of Global Flood Detectlon Usmg Satellite-
Based Rainfall and a Hvdroloaic Model —f‘AM s
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Evaluation of Real-time Global Flood Modeling with Satellite Surface Inundation Observations fromm SMAP
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Tipping Bucket Raingauge  Weather Radar
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Wu et al., 2017, Journal of Hydrometeorlogy
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A New Global Hydrography Database at Multiple Spatial Resolutions Based on
MERIT DEM and DRT Algorithm

Huang!2, Huan Wul2*,Chg Li'?, Dai Yamazaki**, Jing Tao®
g |
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Effective Ca bratlon for Hydrological Models in Unga”.uged BasnnS'

Utility of Satellite-based Evapotranspiration Product
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A Multi-Sourced Flood Inventory in Contiguous United States During TRMM Era
Zhijun Huang’, Huan Wu?2*
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