

Understanding and managing Black Swans

Bruno Merz

GFZ Helmholtz Centre for Geosciences, Potsdam University of Potsdam

Global Flood Partnership Annual Meeting 2025 Budapest, September, 15-17, 2025

We are regularly surprised: Example July 2021

Widespread damage and loss:

- €46 billion damage
- 240 fatalities in Germany and Belgium
- Failure of critical infrastructure: Transport, electricity, water supply and waste water treatment etc.
- •

Locations of fatalities:

Inside flood hazard zones: 30%

Outside flood hazard zones: 58%

Location unclear: 12%

Extremes may not be the large version of small floods

- Ahr, gauge Altenahr: Annual maxima 1947 2020
- Extreme value statistics: Return period of 2021: ~200 * 10⁶ years (GEV shape = 0.06)

Extremes may not be the large version of small floods

- Consideration of 5 historical floods in extreme value statistics
- Return period of 2021: ~8.000 years (GEV shape = 0.26)

Extremes may not be the large version of small floods

Ahr: Seasonal distribution of annual maximum streamflow

Annual maximum flows for 8,900 US catchments:

- Fundamental difference in seasonality between record floods and broader flood population.
- Flood peaks may reflect mixtures of flood agents.

Model chain

Observed and synthetic extreme events

Model chain

10,000 years of synthetic daily data:

- > 1,000 inundation events
- Incl. unfavourable superposition of hazard, exposure and vulnerability

Flood model chain for Rur, Erft, Ahr

Rur Erft

Long-term simulation with flood model chain:

- 72 years (1950-2021) x 100 realisations = 7,200 years of hourly data
- 7 events > 2021: Return period of 2021: ~1,000 years

Observed climate and flood model chain

Return period 2021 ~ 10.000 years

Observed streamflow incl. historical events Return period 2021 ~ 7.000 years

Extremes are ignored due to psychological reasons

- People attach too small subjective probability to events they have not experienced.
- People perceive desirable events as more likely for themselves than for others.
- People cannot predict negative effects of severe flooding, when they have not experienced it (Siegrist & Gutscher, 2008).

The Cognitive Bias Codex - 180+ biases, designed by John Manoogian III (jm3).png:, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=69756809

What if the event precipitation field had occurred 15 km towards the east?

Spatial counterfactuals of 2021 event

(Vorogushyn et al., 2025, NHESS)

Spatial counterfactuals of 2021 event

Relative change in flood peak and volume (24 spatial counterfactuals)

Extremes are underrated as we focus on direct economic costs and benefits

- Usual risk indicator: Expected Annual Damage (EAD)
- EAD-based design minimizes long-term, average damage

BUT:

- Small contribution of extremes to EAD
- EAD ignores indirect and intangible consequences

Flood-induced traffic changes and hospital access

Hospital service area and service population

- Germany-wide analysis of flood-induced traffic disruptions on hospitals
- 75 (of 2,475) hospitals at risk of patient surges beyond capacity
- 25 hospitals > 10 km from nearest inundation

Need to consider extremes beyond design events:

- Understand physical complexities of extremes
- Develop scenarios where people can relate to
- Consider indirect and intangible effects

Better understanding which measures help when

Nature-based solutions

(Montanari et al., 2024, HESS)

0

Probability of occurrence

Flood mapping, traditional

Object-specific precautionary measures

Structural flood defence

Flood mapping including impossible flood

Insurance

Object-specific measures considering impossible flood

Spatial planning

Critical and sensitive infrastructure management

Fail-safe proofing of flood defences

Early warning

Emergency planning and management

Damage D

